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Solution of the phase problem is central to crystallographic structure

determination. An oversampling method is proposed, based on the hybrid

input–output algorithm (HIO) [Fienup (1982). Appl. Opt. 21, 2758–2769], to

retrieve the phases of reflections in crystallography. This method can extend

low-resolution structures to higher resolution for structure determination of

proteins without additional sample preparation. The method requires an

envelope of the protein which divides a unit cell into the density region where

the proteins are located and the non-density region occupied by solvents. After a

few hundred to a few thousand iterations, the correct phases and density maps

are recovered. The method has been used successfully in several cases to

retrieve the phases from the experimental X-ray diffraction data and the

envelopes of proteins constructed from structure files downloaded from the

Protein Data Bank. It is hoped that this method will greatly facilitate the ab

initio structure determination of proteins.

1. Introduction

In the standard procedures of protein crystallography, one of

the most difficult problems is to obtain the phases from the

available moduli of the structure factors. In diffraction

experiments, the reflection intensities I(h; k; l) can be

measured on the detector. The amplitudes of the structure

factors, |F(h; k; l)|, are proportional to the square roots of the

intensities. However, the phases are lost in the experiments.

To reconstruct the electron density of the object, the phase

information must be known. This constitutes the well known

phase problem.

A number of phasing strategies have been developed that in

many situations perform very well. The first method to

determine the phases for protein crystals was multiple

isomorphous replacement (MIR) introduced by Perutz and

Kendrew (Perutz, 1956; Kendrew et al., 1958). Furthermore, if

some similar protein structures are known in advance, mole-

cular replacement may provide the solutions for the phase

problem (Rossmann & Blow, 1962). With the advent of

synchrotron radiation and the development of molecular

biology techniques, a new method of multiple-wavelength

anomalous dispersion (MAD) has been introduced

(Hendrickson et al., 1988; Murthy et al., 1988). Additionally,

even single isomorphous replacement (SIR) or single-

wavelength anomalous dispersion (SAD) can solve the phases

in protein crystallography (Wang, 1985) or with the aid of

direct methods (Ealick, 1997; Weeks & Miller, 1999).

However, isomorphous replacement methods (MIR and SIR)

rely on the stringent preparation of heavy-atom derivative

crystals. Likewise, anomalous scattering techniques (MAD

and SAD) require the existence of heavy atoms in proteins,

and sometimes Se atoms need to be introduced during the

production of proteins. Nonetheless, to obtain the phases in

the de novo structure determination of proteins without

additional sample preparation always attracts the interest of

crystallographers.

The difficulties in de novo structure determination of

proteins are due to the intrinsic insufficiency of the diffraction

data observed in experiments. One can obtain diffraction

intensities I(h; k; l) from a crystal with a grid of N1 � N2 � N3

points along the h, k and l directions in reciprocal space;

therefore, the electronic densities can be calculated on the N1

� N2 � N3 points along the x, y and z directions in real space,

if the phases of the diffraction spots can be known. Owing to

the nature of the crystal, these N1� N2� N3 diffraction peaks

appearing in three dimensions must satisfy Laue’s law. Also

the values of the diffraction intensities are constrained by

Friedel’s law of diffraction, where I(�h;�k;�l) = I(h; k; l)

and F(�h;�k;�l) = Fðh; k; lÞ
�. Generally speaking, we have

to determine the values of the electron densities in the grid of

N1 � N2 � N3 points, but only N1 � N2 � N3/2 independent

intensities can be measured in experiments. The lost infor-

mation is the phases of the diffraction spots, while Friedel’s

law gives the constraint on the phases as ’(h; k; l) = 2� �
’(�h;�k;�l), 0� ’� 2�. In protein crystallography, the well

known process of isomorphous replacement (IR), and also

anomalous scattering (or AD, anomalous dispersion),

provides an opportunity to measure more data. For example,

the anomalous scattering breaks Friedel’s law, where

|F(�h;�k;�l)| is no longer equal to |F(h; k; l)|. Hence we can

measure N1 � N2 � N3 independent diffraction intensities
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instead of N1 � N2 � N3/2. Likewise, isomorphous replace-

ment also implements the measurement of another set of N1�

N2 � N3/2 independent data points. That is sufficient to

explain why IR or AD methods are applicable for solving the

phase problem in protein crystallography.

Several previous works concerning the ab initio phasing

method based on one set of non-anomalous data alone have

been widely discussed. Lunin et al. (2000) reported the method

of solving the phases of low-resolution data and could further

extend the low-resolution phases to high resolution when very

high non-crystalline symmetry is present. Hao (2001) applies a

six-dimensional search to locate the envelope determined by

SAXS (small-angle X-ray scattering), a method developed by

Svergun & Stuhrmann (1991), to yield the low-resolution

structure of protein crystals. Unfortunately, the low-resolution

phases, which correspond with these low-resolution structures,

are difficult to expand to high resolution. Miao et al. (2000)

introduce an oversampling phasing method for high-

resolution three-dimensional structure determination of

complex and non-crystalline biological specimens. By

employing an iterative algorithm, the phase information from

the oversampled diffraction pattern of a micrometre-sized test

specimen has been successfully retrieved. Also, for crystals

Miao & Sayre (2000) showed there are possibilities for over-

sampling. In principle, it is very likely that in protein crystals

proteins only occupy half of the volume inside the crystal cells

since the solvent contents are usually higher than 50%. In such

cases, we can measure N1�N2�N3/2 independent diffraction

intensities and only less than N1 � N2 � N3/2 unknown values

of electron densities need to be determined; the numbers of

measured independent diffraction intensities can be more

than the numbers of unknown electron densities where the

to-be-determined structure in the object domain will be

surrounded by mathematically zero solvent. Therefore, it is

possible to use the oversampling method for retrieving the

phase information.

Here we propose the oversampling method in protein

crystallography to retrieve the phases of diffraction. Based on

the hybrid input–output algorithm (HIO) (Fienup, 1982), the

phases of diffraction peaks of the crystals whose solvent

contents are higher than 50% can be retrieved. The algorithm

is not sensitive to the errors in the diffraction intensities, while

some processes are necessary for correct retrieval. This algo-

rithm is successfully applied to diffraction data sets of high-

solvent-content crystals and the phases can be obtained.

2. Method

As Hao (2001) has pointed out, after the envelopes of proteins

have been determined by SAXS, both the locations and

orientations of the proteins inside the crystal cells can be

defined. Therefore, both the density regions D where the

proteins are located and also the no-density regions occupied

by solvents in the cells are known. On the other hand, the

reflections of the crystals give the amplitudes of the structure

factors, |Fexp(h; k; l)|, as the reciprocal constraints. Here no

anomalous scattering happens and Friedel’s law constrains the

structure factors by |Fexp(h; k; l)| = |Fexp(�h;�k;�l)|.

In such a case, the phases of the reflections can be retrieved

by the following algorithm.

(i) The initial electron densities in the crystal cells can be set

as

�0ðx; y; zÞ ¼

�
1; ½ðx; y; zÞ 2 D�

0; ½ðx; y; zÞ =2 D�
: ð1Þ

Assuming the electron densities are divided into a grid of N1�

N2 � N3 points, the Fourier transformation of �0(x; y; z) gives

the structure factors |Fcalc(h; k; l)|exp½i’ðh; k; lÞ�.

(ii) Replacing |Fcalc(h; k; l)| by |Fexp(h; k; l)|, while keeping

the values of the newest phases ’(h; k; l), a new set of struc-

ture factors |Fexp(h; k; l)|exp½i’ðh; k; lÞ� is constructed. After

applying the inverse Fourier transformation, we get a new

density �01ðx; y; zÞ.

(iii) Modify �01ðx; y; zÞ according to equation (2), which

pushes the grid points outside the support D close to zero to

fulfil the real-space constraints based on HIO (Fienup, 1982):

�mðx; y; zÞ ¼

�
�m�1ðx; y; zÞ; ½ðx; y; zÞ 2 D�

�m�1ðx; y; zÞ � "�0mðx; y; zÞ; ½ðx; y; zÞ =2 D�
:

ð2Þ

(iv) Apply the Fourier transformation to obtain a new set of

|Fcalc(h; k; l)| and ’(h; k; l) as the second step of input for the

successive iteration.

(v) After a few hundreds to thousands of iterations,

convergences are usually reached. According to equation (3)

instead of equation (2), modify �(x; y; z) in the iterations a few

times in order to push the grid points outside the support D to

zero, like solvent flattening (Wang, 1985):

�mðx; y; zÞ ¼

�
�m�1ðx; y; zÞ; ½ðx; y; zÞ 2 D�

0; ½ðx; y; zÞ =2 D�
: ð3Þ

Concerning the convergence of the phasing algorithm, the

agreement between the true and estimated structures should

be monitored during the iterations. Here we utilize the cross-

correlation coefficient (CC) and average error in the phase

angle �’ defined as follows to trace the process:

CC ¼P
hkl Fexpðh; k; lÞ
�� �� Fcalcðh; k; lÞ

�� �� cos ’expðh; k; lÞ � ’calcðh; k; lÞ
� �

P
hkl Fexpðh; k; lÞ
�� ��2 P

hkl Fcalcðh; k; lÞ
�� ��2h i1=2

ð4Þ

�’ ¼

P
hkl arccos cos½’expðh; k; lÞ � ’calcðh; k; lÞ�

� �
P

hkl

: ð5Þ

The algorithm iterates between reciprocal and real space. In

reciprocal space, the correct Fourier moduli are restricted by

the amplitudes of the structure factors; in real space, the

electron densities outside the support region D are gradually

pushed close to zero. Since the phasing algorithm alternately

implemented the reciprocal-space and the real-space con-

straints, the correct phase set can be retrieved after a few
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hundred to a few thousand iterations. Here HIO (Fienup,

1982) is proposed and the procedure is similar to solvent

flipping (Abrahams, 1997). The optimal value of " is a heuristic

number between 0.5 and 1, which controls the speed of

convergence. Usually " is set to 0.9.

3. Verification of the phasing algorithm and simulation
results

3.1. The feasibility of the phasing algorithm

By employing the algorithm mentioned above, we have

performed computer modelling to reconstruct the electron

densities in crystal cells. A number of residues were cut from a

PDB (Protein Data Bank) file (1n0h), which were confined

inside a finite spherical region with a radius of 20 Å. Then a

translation along the z axis was applied, giving the molecule a

translational symmetry. We utilized this structure to construct

several crystal cells with different cell parameters and with

distinct solvent contents. The constructed PDB files were used

to calculate the diffraction intensities for the subsequent

reconstructions of these models, where the structure factors

were firstly obtained by the program SFALL of the CCP4

library (Collaborative Computational Project, Number 4,

1994) at 2.00 Å resolution. The first case, named P41-100, has a

very high solvent content of 70.34% with a crystal cell of 100�

100 � 105 Å. Then we reduced the dimensions of the crystal

cells with 5 Å step length, in order to arrive at distinct solvent

contents. The space group of all examples is P41. The final

example P41-80 has a crystal cell of 80 � 80 � 85 Å and has a

low solvent content of 42.99%. Details of the different

examples are given in Table 1.

Fig. 1 shows the convergent process of five cases after 1400

iterations of the phasing algorithm and the final stage of 100

cycles of solvent flattening. For the cases P41-100, 95 and 90,

that have a solvent content of 70.34, 65.74 and 59.61%,

respectively, the CC (cross-correlation coefficient) values

converged after sufficient iterations to a final CC of 0.97, 0.89

and 0.81, respectively. In the meantime the average errors in

the phase angles �’ (between the recovered phases and the

theoretical phases computed from the constructed PDB file by

the program SFALL) converged to 34.8, 51.6 and 66.0�,

respectively. The electron-density map of case P41-100 evolves

from a homogeneous sphere to the correct densities as is

illustrated in Fig. 2. It is easy to trace the polypeptide chain

from the 2.00 Å density map for structure determination. On

the contrary, the cases of P41-85, 80 that have lower solvent

contents of 52.25 and 42.99%, respectively, have no conver-
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Figure 2
(a) The 2.0 Å electron-density map (in blue) of P41-100 after con-
vergence compared with the �-carbon tracing of the constructed model
superimposed and the envelope (in green). (b) A small section of the map
with the final structure superimposed.

Figure 1
The convergent processes of P41-100, 95, 90, 85 and 80 after 1400
iterations of the phasing algorithm and the final stage of 100 cycles of
solvent flattening without histogram matching. (a) CC values plotted
versus the number of iterations, (b) average errors in phase angles �’
plotted versus the number of iterations. P41-90, 95, 100 in blue, dark cyan,
magenta, respectively, all have convergent results. P41-80 in black and
P41-85 in red have no obvious convergent process.

Table 1
The results of different models in testing the algorithm of phase retrieval.

HM: histogram matching.

Dimensions
of the cells

Solvent
content

CC �’ (�)

(Å) (%) No HM HM No HM HM

P41-100 100 � 100 � 105 70.34 0.97 0.95 34.8 45.3
P41-95 95 � 95 � 100 65.75 0.89 0.87 51.6 53.8
P41-90 90 � 90 � 95 59.61 0.81 0.82 66.0 60.4
P41-85 85 � 85 � 90 52.25 0.27 0.87 87.9 57.0
P41-80 80 � 80 � 85 42.99 0.15 0.07 89.7 89.2



gence results, as shown in Fig. 1 by the red and black lines.

Concerning the applicability of the phasing algorithm, the

oversampling condition should be satisfied. This means in

principle that the solvent contents in the crystal cells should be

at least higher than 50%, and the higher the better. Therefore,

this algorithm did not take effect for the cases of P41-85, 80,

because of the restraint of high solvent contents.

3.2. Applying histogram matching

In the last section, we showed that the phasing algorithm

can retrieve the phase directly from the diffraction data and

the envelope of the protein. In 1988 and in subsequent works,

Lunin pointed out (Lunin, 1988; Lunin & Skovoroda, 1991;

Lunin et al., 1990; Lunin & Vernoslova, 1991) that histogram

matching could be useful for improving electron-density maps.

Zhang & Main (1990a) presented it in a simplified form and

incorporated it in the program SQUASH (Zhang & Main,

1990b); another example is DM in the CCP4 library (Colla-

borative Computational Project, Number 4, 1994; Cowtan &

Main, 1996). We can also incorporate histogram matching by

using the subroutine of DM as another real-space constraint in

the iterations.

After the modification of densities according to equation

(2), histogram matching is then applied to the densities. We

have performed this improved method on the five cases

mentioned above. Fig. 3 shows the convergent process of the

five cases after 1400 iterations of the phasing algorithm and

the final stage of 100 cycles of solvent flattening with histo-

gram matching. For the cases of P41-100, 95, 90, we succeeded

in retrieving the phases, and the results did not differ much

compared with those obtained without histogram matching.

However, as shown in Fig. 4, for the case of P41-85 which has a

solvent content of 52.25% there is a clear difference in the

results obtained with histogram matching (in red) and without
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Figure 3
The convergent processes of P41-100, 95, 90, 85, 80 after 1400 iterations of
the phasing algorithm and the final stage of 100 cycles of solvent
flattening with histogram matching. (a) CC values plotted versus the
number of iterations, (b) average errors in phase angles �’ plotted versus
the number of iterations. P41-85, 90, 95, 100 in red, blue, dark cyan,
magenta, respectively, all have convergent results. P41-80 in red has no
obvious convergent process.

Figure 4
The convergent process of P41-85 which has a solvent content of 52.25%
after 1400 iterations of the phasing algorithm and the final stage of 100
cycles of solvent flattening without histogram matching (in black) and
with histogram matching (in red). (a) CC values plotted versus the
number of iterations, (b) average errors in phase angles �’ plotted versus
the number of iterations.



it (in black). The final CC value is 0.87 when applying histo-

gram matching and 0.27 when not applying it, �’ converges to

57.0� after applying histogram matching and to 87.9� when not

applying it. After applying histogram matching the density

map in the case of P41-85 is clearer and easier to interpret than

before, as illustrated in Fig. 5. We believe that histogram

matching, as a real-space constraint in the iterations, can lower

the demand in solvent contents and enhance the efficiency of

this method. The results of the different cases are illustrated in

Table 1.

3.3. Insensibility to errors

There are errors associated with the measurement of

diffraction data I(h; k; l) collected by X-ray detectors. To

examine the applicability of this approach to experimental

data, we have to study the sensitivity of the algorithm to

errors. We simulated the effects of errors in our computer

modelling. Making the assumption that all the errors reside in

|F(h; k; l)| and that errors follow a Gaussian distribution, the

probability of Ip(h; k; l) having a certain value is then

Ipðh; k; lÞ / exp½�ð"� amÞ2=2�2�;

where am is the mean value, � the standard deviation. In this

instance, am is equal to I(h; k; l) and � is selected as 10 �

|F(h; k; l)| and 100 � |F(h; k; l)| which means 10 times and 100

times |F(h; k; l)|, termed 10F and 100F, respectively.

As is shown in Fig. 6, we added errors of 10F in the

diffraction intensities in the case of P41-85 (in black); after

1400 iterations of the phasing algorithm and the final stage of

100 cycles of solvent flattening our algorithm successfully

obtains a convergence result with the final CC = 0.86 and �’ =

57.1�. We then add errors of 100F in the diffraction intensities

(in red). A good reconstruction result with the final CC = 0.84

and �’ = 59.2� is also shown in Fig. 6. The convergent density

map of applying 100F of errors in Fig. 7 clearly displays the

structures of the proteins. The reason for the insensibility to

errors is that the electron densities are the result of the

combination of all the diffraction data observed in experi-

ments; although the Gaussian distribution error might be very
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Figure 6
The convergent process of P41-85 which has a solvent content of 52.25%
after 1400 iterations of the phasing algorithm and the final stage of 100
cycles of solvent flattening with an error of 10F (in black) or 100F (in red).
(a) CC values plotted versus the number of iterations, (b) average errors
in phase angles �’ plotted versus the number of iterations.

Figure 7
(a) The 2.0 Å electron-density map of P41-85 after convergence (in blue)
with added error of 100F, compared with the �-carbon tracing of the
constructed model superimposed. (b) A small section of the map with the
final structure superimposed.

Figure 5
(a) The 2.0 Å electron-density map of P41-85 after convergence without
histogram matching, and (b) with histogram matching, compared with the
�-carbon tracing of the constructed model (left) and the final structures
superimposed (right).



big in each diffraction peak, this kind of spontaneous error

should be alleviated during the Fourier synthesis. Since our

iterative process is based on the Fourier transformation rather

than the amplitude relationship in the direct method, the

precision of the amplitude is not that crucial any more.

3.4. The influence of resolution

A high resolution of a three-dimensional structure is

necessary to understand the functions of proteins at a mole-

cular level. We therefore tested the influence of different

resolutions on the phasing algorithm. There are five cases

derived from P41-85 with resolutions ranging from 1.6 to 3.2 Å

in 0.4 Å steps. Shown in Fig. 8, after 1400 iterations of the

phasing algorithm and the final stage of 100 cycles of solvent

flattening, in the cases of 1.6, 2.0 and 2.4 Å there is a

convergence result with a high CC above 0.8 and �’ less than

65�. However there are some instable fluctuations in the cases

of 2.8 and 3.2 Å, and the final result is not satisfactory as

shown in Fig. 8 in dark cyan and magenta, respectively. A

possible reason is that the constraints in real space are

gradually weakened as the resolution decreases. When the

resolution of a three-dimensional structure is around 3.0 Å,

there are some ambiguities in the protein secondary structure;

this may cause an accumulative discrepancy in each iteration

which means the phasing algorithm does not function very

well.

3.5. Reconstructing near-forward low-resolution data

In reality, it is impossible to obtain the full experimental

data including all of the near-forward low-resolution data

because of the beam stop. Unfortunately this part of the data

is important. Many people have pointed out that the HIO

phase-retrieval algorithm is quite sensitive to near-forward

low-resolution data (or missing central data) (Fienup &

Wackerman, 1986). The near-forward low-resolution data

confer the shapes of proteins, namely the optimized density

regions D. If the missing near-forward low-resolution data are

serious, there is no rigorous constraint upon the correct shapes

of proteins in the diffraction data, and the iterative process

would fall into a false minimum. Thus, we reconstruct the

missing near-forward low-resolution data as follows:

Regions E represent the data that we can detect, otherwise

E0 stands for the missing regions including the near-forward

low-resolution data. During the iterations, in the mth cycle,

after modifying �0m(x; y; z) according to equation (2), we

obtain a full set of complete data |Fcalc
m ðh; k; lÞ| from Fourier

transformation; then we should replace |Fcalc
m ðh; k; lÞ| by

|Fexpðh; k; lÞ| in the region E. Unfortunately, the values of

|Fexp(h; k; l)| in the region E0 are not available; therefore we

use |Fcalc
m ðh; k; lÞ| in the region E0, or in other words

|Fcalc
m ðh; k; l 2 E0Þ)|, to calculate the lost |Fexp(h; k; l)|, by

multiplying by a scale factor which is the quotient of dividing

the sum of |Fexp(h; k; l)| by the sum of |Fcalc
m ðh; k; lÞ| in the

regions E. That is to say, after m iterations, we calculate

|Fexp
m ðh; k; l 2 E0Þ| by the following equation (6):

Fm
exp
ðh; k; lÞ

hkl2E0

����
���� ¼ Fm

calc
ðh; k; lÞ

hkl2E0

����
�����

P
hkl2E Fexpðh; k; lÞ

�� ��P
hkl2E Fm

calcðh; k; lÞ
�� �� :

ð6Þ

These reconstructed data are not of constant value and may

change in each iteration. By employing this method, we can

get a full set of |Fexp(h; k; l)| and can use the algorithm for

successive iterations. In later discussion, we use an example to

show how this is executed (see Fig. 11).

4. Phasing from the envelopes of some high-solvent-
content protein crystals

4.1. Molecular shape determination in terms of spherical
harmonics

SAXS is a method developed recently for determining the

shapes of biological macromolecules in solution. From the
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Figure 8
The convergent process of P41-85 with resolutions ranging from 1.6 to
3.2 Å in 0.4 Å steps. (a) CC values plotted versus the number of iterations,
(b) average errors in phase angles �’ plotted versus the number of
iterations. The cases of 1.6, 2.0 and 2.4 Å in black, red, blue, respectively,
have convergent results. The cases of 2.8 and 3.2 Å in dark cyan and
magenta, respectively, have unstable fluctuations in the evolution of
reconstruction.



SAXS data, one can determine the biological molecular

envelope by a two-dimensional angular function !(�, ’)

describing the molecular boundary such that the particle

density �(r) is unity inside and vanishes elsewhere. The

function !(�, ’) can conveniently be expanded into a series of

spherical harmonics Ylm(�, ’) according to the following

equation:

!ð�; ’Þ ¼ Z0

PL
l¼0

Pl

m¼�l

flmYlmð�; ’Þ; ð7Þ

with flm being complex multipole coefficients and l repre-

senting the multipole order. Z0 is a scale factor. Furthermore,

where Pm
l ðcos �Þ are associated Legendre functions (with

argument cos ’), and l and m are integers with �l � m � l

(Svergun & Stuhrmann, 1991; Svergun et al., 1996)

Ylmð�; ’Þ ¼
ð2l þ 1Þðl �mÞ!

4�ðl þmÞ!

� 	1=2

Pm
l ðcos �Þ expðim’Þ: ð8Þ

Svergun et al. (1995) developed a program named CRYSOL

for evaluating the solution scattering from macromolecules

with known atomic structures; thus, we downloaded some

high-solvent-content protein structures from the PDB and

used CRYSOL to predict the SAXS data (Svergun et al.,

research papers

262 Liu, Xu and Dong � Phase retrieval in protein crystallography Acta Cryst. (2012). A68, 256–265

Table 2
The flm coefficient distribution at the precision of l = 5 calculated by
CRYSOL for the case of 1y5y, where Z0 = 31.146578.

Envelope function from 1y5y.

l m Real part of flm Imaginary part of flm

0 0 3.417654 0.000000
1 0 �0.008363 0.000000
1 1 �0.041268 �0.013553
2 0 0.242316 0.000000
2 1 �0.143523 �0.167466
2 2 0.016771 �0.322748
3 0 0.021200 0.000000
3 1 �0.010219 0.073997
3 2 �0.016515 �0.015955
3 3 0.005789 �0.046974
4 0 0.139274 0.000000
4 1 0.054295 0.031538
4 2 0.012270 0.000759
4 3 0.060709 �0.069023
4 4 0.099641 0.004127
5 0 0.058214 0.000000
5 1 �0.048134 0.028456
5 2 0.021700 0.013332
5 3 �0.003628 �0.043533
5 4 �0.023510 0.022587
5 5 0.023720 0.015379

Figure 9
(a) The envelope of 1y5y after expanding according to the symmetries of
space group P43212. The envelope is shown in green. (b) The envelope of
1y5y which has a block region D2, as shown in green.

Table 3
The five cases downloaded from the PDB and the final results of sufficient
iterations.

ID
Space
group

Solvent
content (%)

Resolution
(Å) Final CC �’ (�)

1y5y P43212 68.00 2.00 0.85 45.2
2uxj P43212 76.56 2.25 0.79 50.9
3iai P61 77.89 2.20 0.72 54.0
1n0h P422 65.72 2.80 0.69 58.2
2hnk P2221 69.86 2.30 0.60 69.3

Figure 10
The convergent process of 2uxj and 1y5y after 1400 iterations of the
phasing algorithm and the final stage of 300 cycles of solvent flattening.
(a) CC values plotted versus the number of iterations, (b) average errors
in phase angles �’ plotted versus the number of iterations.



1995). The factors flm are complexes, the real part and

imaginary part of flm are shown in Table 2. According to

equations (7), (8) and (9),

�ðrÞ ¼
1; 0 � r � !ð�; ’Þ
0; r>!ð�; ’Þ

�
; ð9Þ

we can get the envelopes of the protein molecules. Using the

envelopes and expanding by the symmetries of space groups,

we shall know the non-density regions occupied by solvents

and the density regions where the proteins are located in the

cells. An example of the envelope of protein 1y5y from the

PDB is illustrated in Fig. 9(a).

4.2. Adding a block region

In Fig. 9(a), the protein molecules are basically wrapped by

the envelopes, but there are still a small number of residues of

the polypeptide chains out of the envelopes. In our tests,

without appropriate treatment for these special residues, the

iterative process would fall into a false minimum. To solve this

stagnation problem, we introduced an improvement in the

third step of the method, which ignores the effect of these

special residues; the details are given below:

Separate the unit cell into three parts: (i) the density regions

D1 where the proteins are located; (ii) the block shell D2

surrounding the molecules, usually 3 or 4 Å thickness; (iii) the

remaining regions D3 occupied by the solvents. An example

of 1y5y with a block region is shown in Fig. 9(b). Then in the

third step of the method, we modified �m(x; y; z) according to

equation (10) instead of equation (2),

�mðx; y; zÞ ¼

�m�1ðx; y; zÞ; ½ðx; y; zÞ 2 D1�

0; ½ðx; y; zÞ 2 D2�

�m�1ðx; y; zÞ � "�0mðx; y; zÞ; ½ðx; y; zÞ 2 D3�

8<
: ;

ð10Þ

which pushed the grid points inside the block region D2 always

to zero in the iterative process, and pushed the grid points in

the region D3 close to zero to fulfil the real-space constraint

based on the HIO. Since the block region may have a few

electron densities, we force this region to be always zero to

weaken the effect of this region for the whole iterative process.
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Figure 11
The missing amplitudes of reflections 000012 and 000016 in (a) 2uxj and (b) 1y5y reconstructed from equation (6) versus the number of iterations.



4.3. Results and discussion

After the improvement (applying histogram matching,

reconstructing near-forward low-resolution data and adding a

block region) in this method, we have performed phase

retrievals for several cases of protein crystals with the ampli-

tudes of structure factors derived from diffraction data

collected by X-ray detectors and envelopes calculated from

the structure files downloaded from PDB files. Table 3 illus-

trates the final results of five cases in descending order of CC

values. The space groups are different in the five cases and

resolutions range from 2.0 to 2.8 Å; in each case the crystal cell

has a high solvent content above 65% to satisfy the over-

sampling condition. The final CC values in the five cases are

larger than 0.60 and the values of �’ are smaller than 70�.

Such values mean that the density maps are able to trace the

polypeptide chains of the proteins.

Shown in Fig. 10, 1y5y (in red) and 2uxj (in black) have

solvent contents of 68.00 and 76.56%, respectively, and after

the same 1400 iterations of the phasing algorithm and the final

stage of 300 cycles of solvent flattening, they both converge

with CC = 0.85 and 0.79, �’ = 45.2 and 50.9�, respectively. For

the two cases, we monitored the reconstruction of missing low-

resolution data. As shown in Fig. 11, the amplitudes of

reflections 000012 and 000016 reconstructed from equation (6)

fluctuated wildly and irregularly in the first part of the 1400

iterations and vibrated only slightly in the last 300 iterations.

Since the iterative process is based on the Fourier transfor-

mation rather than the amplitude relationship in the direct

method, the precision of the amplitude is not that crucial, but

the existence of values for these reflections does help the

iterations to avoid falling into a false minimum. When

convergences were reached after 1400 cycles, we modified the

solvent region to zero, so the amplitudes of missing low-

resolution reflections were more stable than before. This

caused a little vibration of the CC and �’ curves in the

convergence result, as shown in the case of 2uxj. In our test,

once a convergence result is obtained after the first part of

sufficient iterations, applying solvent flattening a few times

rather than hundreds to thousands of times is adequate.

The reconstructed density map is shown in Fig. 12. In cases

such as 1y5y and 2uxj, the final CC reaches 0.85 and 0.79, and

the average error in the phases �’ is as small as 45.2 and 50.9�,

respectively. One can clearly see the connectivity of the main

chain and the fit of the side chain at the resolutions of the data

sets (2.00 Å for 1y5y, 2.25 Å for 2uxj) from Figs. 12(a) and

12(b), which provide a high-quality density map for structure

determination. Because of the block region, small parts of

densities at the edge of the envelope are missing, but this does

not have a great influence on the map interpretation. For the

case of 2hnk, the final CC = 0.60 and �’ = 69.3�, and the

quality of the density map shown in Fig. 12(c) at 2.30 Å

resolution is poor in comparison with the other two cases

discussed below; however, one can still see the connectivity of

the main chain and the fit of the side chain from the density

map. These maps are a good starting point for ab initio

structure determination. It should be noted that the conver-

gence speed is somewhat different in each case. 3iai reaches

the convergence result after 400 iterations and a final 100

cycles of solvent flattening, whereas 2hnk and 1n0h need more

iterations (2900 iterations and 100 cycles of solvent flattening,

and 7500 iterations and 100 cycles of solvent flattening,

respectively). Because of the different qualities of the initial

X-ray diffraction data, it is natural that the convergent

processes are different in each case.

5. Conclusions

It has been demonstrated that the phases of reflections can be

retrieved using this iteration method, which appears to have a

fair degree of robustness against the errors in the intensity

data; however, it requires a high solvent content in the protein

crystals. The cases illustrated in Table 3 all have a high solvent

content, more than 65%; hence the oversampling condition is

satisfied and the phases can be solved by this method.

Reflection data with a resolution better than 3.0 Å are

favorable for this algorithm since they meet the requirements

for distinguishing the secondary structures of proteins. It is

anticipated that other density-modification methods, such as

non-crystallographic symmetry averaging, could break

through this restriction. It is hoped that this method will

greatly facilitate the ab initio structure determination of

proteins.
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Figure 12
The reconstructed electron-density map after sufficient convergence. (a)
2.00 Å map of 1y5y, (b) 2.25 Å map of 2uxj, (c) 2.30 Å map of 2hnk,
compared with the �-carbon tracing of the constructed model (left) and
the final structure superimposed (right).
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